& ChatGPT

Valkey Beginner’ s Guide

Concepts and Terminology

What is Valkey? Valkey is an open-source, in-memory key-value data store designed as a drop-in
replacement for Redis OSS 1 . It was created as a community-driven fork of Redis 7.2 when Redis Inc.
announced future versions would not be fully open source 2 . Backed by the Linux Foundation, Valkey
will remain BSD-licensed open source forever 2 . In essence, Valkey retains the core concepts of Redis -
it stores data in memory for ultra-fast access, supports persistence to disk, and offers the same rich set of
data structures (strings, hashes, lists, sets, sorted sets, streams, bitmaps, HyperLoglLogs, geospatial
indexes, etc.) 3 . This means you can use Valkey as a cache, message broker, session store, or even a
primary NoSQL database, much like Redis.

Key Terminology: Valkey uses modern terminology similar to newer Redis versions. A primary is the
read-write master node (previously called “master” in Redis), and a replica is a read-only copy
(formerly “slave”). A sentinel is a specialized Valkey process that monitors primaries and replicas for
high availability and can automatically perform failover (more on this later) 4 . Valkey Cluster refers to
running Valkey in a distributed, sharded mode for horizontal scaling and high availability, using multiple
nodes and partitioning the keyspace into hash slots (Valkey uses 16,384 hash slots, identical to Redis
Cluster) 5 6 . Each node in a cluster handles a subset of slots, and data is automatically sharded
among nodes. Numbered databases (sometimes called logical databases, indexed by a DB number like
0,1,2,... up to 15 by default) allow separate key namespaces on a single instance. In Redis, numbered DBs
were disabled in cluster mode (cluster always used only DB 0), but Valkey 9.0 introduces support for
multiple databases even in cluster mode 7 , effectively providing namespacing without requiring key
prefixes. Other terms you’ ll encounter include TTL (time to live expiration for keys), Lua scripting
(using the embedded Lua 5.1 engine or extended function API), and modules (plugins that add new data
types or commands). Valkey supports Redis’ s module system, so you’ Il see official Valkey modules for
JSON (document support), Bloom filters, vector search, etc., which extend its capabilities.

Valkey’ s data model and commands are virtually identical to Redis’ s. It supports atomic operations
on data structures (e.g. pushing to a list, incrementing a counter), pub/sub messaging, and transactions
with MULTI/EXEC. The keyspace (set of all keys in the database) can be managed with similar commands
(SCAN, KEYS, etc.), and Valkey has the same notion of key eviction policies when used as a cache with a
max memory limit (all Redis eviction strategies like LRU, LFU are available) 8 . Because Valkey is
protocol-compatible with Redis, existing Redis client libraries and tools can communicate with Valkey
without modification in most cases 9 . In summary, if you know Redis, you already understand most
Valkey concepts - the difference lies in new features and the open-source governance of Valkey.

New Features in Valkey (Compared to Redis 7.2)

Valkey’ s initial version (7.2.4) started as a fork of Redis 7.2, so it included all Redis 7.2 features, but the
community has rapidly extended and improved it. Open-source forever: The most fundamental
“feature” of Valkey is its license - unlike Redis 7.2 which was the last truly open Redis version, Valkey

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20an%20open%20source%2C,for%20replication%20and%20high%20availability
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=In%20March%202024%2C%20after%20Redis,by%20multiple%20Linux%20distributions%2C%20software
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=In%20March%202024%2C%20after%20Redis,by%20multiple%20Linux%20distributions%2C%20software
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20has%20a%20vast%20variety,Valkey%20data%20types%20include
https://valkey.io/topics/sentinel/#:~:text=,the%20new%20address%20to%20use
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20does%20not%20use,we%20call%20a%20hash%20slot
https://valkey.io/topics/cluster-tutorial/#:~:text=There%20are%2016384%20hash%20slots,of%20the%20key%20modulo%2016384
https://valkey.io/blog/numbered-databases/#:~:text=Historically%2C%20before%20Valkey%E2%80%99s%20preceding%20project,changing%20everything%20about%20that%20advice
https://valkey.io/topics/#:~:text=,clone%20with%20PHP%20and%20Valkey
https://valkey.io/clients/#:~:text=This%20page%20includes%20only%20clients,please%20refer%20to%20this%20link

will remain permissively licensed (BSD-3-Clause) under community stewardship 2 10 . Beyond
licensing, Valkey introduces several technical enhancements and new capabilities beyond Redis 7.2:

- 1/0 Multi-threading and Performance Boosts: Valkey 8.0 introduced a new I/O threading
architecture that dramatically improves throughput and latency. By parallelizing parts of
command processing, Valkey 8.0 achieved up to 230% higher throughput and 70% lower
latency compared to Valkey 7.2 (Redis 7.2) under heavy workloads 11 . In Valkey 8.1, these gains
were extended: more operations (like aspects of networking and TLS) are offloaded to background
I/O threads, further increasing performance. For example, offloading TLS handshake and buffer
processing to 1/0 threads improved new connection acceptance rate by ~300%, and yielded ~10%
higher SET throughput and ~22% higher GET throughput in benchmarks 12 . The number of I/O
threads is configurable (similar to Redis 6+ io-threads setting) - by default Valkey runs in single-
threaded mode for execution, but enabling additional 1/O threads can improve performance on
multi-core systems for network-heavy or TLS workloads. The net result is Valkey can handle
significantly more operations per second than Redis 7.2 on the same hardware when tuned, while
retaining the single-threaded command execution semantics to avoid data races.

- Memory Efficiency Improvements: Valkey 8.0 and 8.1 include optimizations to reduce memory
overhead per key. A major change in Valkey 8.1 was a redesigned hash table implementation for
the keyspace and core data structures 13 . This new hash table uses modern techniques to pack
and align data more efficiently, resulting in roughly 20-30 bytes of memory saved per key (20
bytes saved for keys without expiration, ~30 bytes for keys with TTL) 14 . This optimization means
you can store more keys in the same amount of RAM. In Valkey’ s own benchmark of 50 million
entries, Valkey 8.1 showed significantly lower memory usage than 8.0. Additionally, Valkey 8.1
optimized certain data type operations using SIMD instructions - e.g. the HyperLogLog | PFCOUNT
and | PFMERGE operations are up to 12x faster using AVX2 acceleration 15 ,and BITCOUNT on large
bitmaps is over 5x faster with AVX2 16 . Sorted set operations got targeted speedups too (e.g.

ZRANK | up to 45% faster) 17 . These improvements collectively mean Valkey can deliver better
performance and use less memory than Redis 7.2 by default.

- New Data Capabilities and Commands: The Valkey community has added features that were not
available in Redis 7.2:

+ Hash Field Expiration: Valkey 9.0 (upcoming at the time of writing) introduces the ability to set
expirations on individual fields within a hash 18 . In Redis/Valkey up to 8.x, expirations (TTLs)
could only be set on whole keys. With per-field TTLs in Valkey 9.0, you can have finer-grained
cache invalidation or session expiration within a single hash object (for example, auto-expiring
certain fields). This feature required significant changes to how expirations are tracked and is a
unique Valkey enhancement.

+ Conditional Updates (Compare-and-Set): Valkey 8.1 added a new option to the SET | command for
conditional updates. Using | SET ... IFEQ <expected-value> allows atomic set-if-equals logic on a
key 19 .In other words, the SET will succeed only if the current value matches the given
expected value. This eliminates the need for a separate GET and compare in many cases and saves
a round trip. (Valkey also supports the standard NX/XX options from Redis for set-if-not-exists or
set-if-exists. The new IFEQ option is analogous to a CAS operation and was not available in vanilla
Redis.)

« Cluster Multiple Databases: As mentioned, Valkey 9.0 lifts a Redis Cluster limitation by supporting
numbered databases in cluster mode 7 .You will be able to| SELECT | a different database index
even when connected to a cluster. Keys in different logical DBs are still distributed across the
cluster slots the same way (the hash slot is computed from the key name as usual; the DB index

https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=In%20March%202024%2C%20after%20Redis,by%20multiple%20Linux%20distributions%2C%20software
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Open%20source
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=In%20the%20new%20release%2C%20TLS,new%20connections%20by%20around%20300
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20New%20Hashtable
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=number%20of%20allocations%20to%20store,accesses%20while%20also%20saving%20memory
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20probabilistic%20hyperloglog%20is%20another,on%20hyperloglog%20data%20types
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=regardless%20of%20the%20amount%20of,on%20hyperloglog%20data%20types
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Sorted%20set%20and%20hyperloglog%20and,bitcount%20optimizations
https://valkey.io/blog/#:~:text=One%20of%20Valkey%E2%80%99s%20greatest%20strengths,start%20using%20this%20feature%20today
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Conditional%20Updates
https://valkey.io/blog/numbered-databases/#:~:text=Historically%2C%20before%20Valkey%E2%80%99s%20preceding%20project,changing%20everything%20about%20that%20advice

does not affect slot calculation) 20 21 | Essentially each slot now contains 16 logical sub-

databases. This feature is mainly for namespacing convenience - it allows multi-tenant usage of

one cluster or separating data without key-prefix conventions. (Note: This doesn’ t provide

resource isolation; it’ s purely a logical separation 22 . Heavy use of multiple DBs can still have
“noisy neighbor” effects, so use case should be considered carefully.)

- Improved Observability: Valkey 8.1 introduced a COMMANDLOG feature extending Redis’ s Slow
Log. While the Slow Log tracked only slow commands, Valkey’ s new command log can record
large or slow commands, capturing payload sizes and response sizes for troubleshooting end-
to-end latency 23 . This helps identify commands that might be fast server-side but slow overall
due to huge reply size or network. Additionally, the built-in latency monitor was enhanced - the

LATENCY LATEST output now includes the total count of events and cumulative latency for each
monitored event type 24 . This gives more insight into how often spikes occur. Logging is more
flexible too: you can switch Valkey’ s log output to structured logfmt format and 1S08601
timestamps for easier ingestion by log aggregators 25 26 ,

+ Module Ecosystem (JSON, Search, Bloom, etc.): Because Valkey continues as an open-source
project, modules that were formerly proprietary in Redis Stack now have open-source
equivalents. The community has released Valkey JSON (a module for JSON document storage
with JSONPath querying) 27 , Valkey Search (for vector similarity search and secondary indexing
of data, comparable to Redis Search) 28 | and Valkey Bloom (Bloom filters data type) among
others. These modules can be loaded into Valkey to extend its functionality with features similar
to RedisJSON, RediSearch, etc., but under open licenses 29 . For convenience, there is even a
Valkey-Bundle Docker image that packages Valkey with official modules like JSON, Bloom, Vector
Search, and LDAP auth in one container 29 . This “batteries-included” option makes it easy to
deploy a single Valkey instance that has the capabilities of an entire Redis Stack (useful for
development and certain production use cases).

Aside from the above, Valkey incorporates all features of Redis 7.2 (ACLs for authentication and
authorization, client-side caching support (| CLIENT TRACKING), Streams with consumer groups, PUB/SUB,
Lua scripting, etc.). Valkey’ s enhancements are largely backward-compatible - you can use it as a direct
replacement for Redis but gain performance and new commands. For example, AWS in their ElastiCache
service reports Valkey 8.0’ s threading and memory optimizations yield 20%+ memory savings and
substantial throughput gains over Redis 11 . If you stick to Redis 7.2 features, Valkey behaves the same;
if you choose to use new features (like IFEQ or hash field TTLs), ensure your client libraries are updated to
handle those new commands.

Installation Guide

You can install Valkey on a CentOS server or in a container with minimal effort. Below are common
installation methods and then we’ |l cover configuring Valkey for different deployment topologies.

Installing Valkey on CentOS (and Linux)

Valkey provides pre-built binaries and is also packaged in many Linux distributions. For CentOS 7/8 (or
RHEL and Fedora), the easiest way is to use | yum | if a Valkey package is available. First, enable EPEL (Extra
Packages for Enterprise Linux) if needed (Valkey may be packaged there) 30 . Then run:

sudo yum install valkey

This installs the server (valkey-server) and CLI (valkey-cli). Optionally, you can install
valkey-compat-redis which sets up symlinks so that | redis-server land| redis-cli commands point to

https://valkey.io/blog/numbered-databases/#:~:text=then%20does%20a%20modulo%20of,determinate%20factor%20in%20calculating%20slots
https://valkey.io/blog/numbered-databases/#:~:text=,SELECT%205%20OK
https://valkey.io/blog/numbered-databases/#:~:text=Additionally%2C%20numbered%20databases%20do%20not,application%20instead%20of%20numbered%20databases
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Extending%20the%20Slowlog%20to%20Commandlog
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%20has%20a%20built,threshold%60%20latency%20monitor
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%208,files%20by%20log%20collecting%20systems
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20formatting%20of%20the%20timestamp,default%20is%20the%20existing%20format
https://valkey.io/blog/#:~:text=%2A%20,Capabilities%20in%20Valkey
https://valkey.io/blog/#:~:text=%2A%20,To%20Valkey
https://valkey.io/blog/#:~:text=%2A%20%23%23%20valkey,time%20applications
https://valkey.io/blog/#:~:text=%2A%20%23%23%20valkey,time%20applications
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions
https://valkey.io/topics/installation/#:~:text=sudo%20yum%20install%20valkey

Valkey (for backward compatibility in scripts) 31 . You may also install | valkey-doc for local man pages
(man valkey.conf , etc.) 32 .0n Debian/Ubuntu systems the process is similar with apt install valkey
33 . On Alpine: apk add valkey | 34 .In case your OS’ s standard repos don’ t have Valkey yet, you can
download the official binary tarball from the Valkey GitHub releases page 35 and run the
valkey-server | binary directly (or compile from source with a simple make /command 36).

After installation, you’ ll have a /etc/valkey.conf | default configuration file (similar to redis.conf). For a
quick test, you can launch Valkey in the foreground with default settings by running:

valkey-server

(This listens on port 6379 by default). To run it as a background service, edit the | valkey.conf | (e.g. set
daemonize yes) or use your OS service manager (systemd unit files may be included). On CentOS with
systemd, you might manage it via' systemctl enable --now valkey .

Verify the installation: Use the CLI to confirm Valkey is running. The Valkey CLI syntax is the same as
Redis CLI. For example, try:

$valkey-cli PING
PONG

If you get “PONG” , the server is up and responding 37 . Running | valkey-cli | with no arguments
enters an interactive shell (REPL) where you can type commands directly 38 .

Running Valkey via Docker

Valkey provides official Docker images on Docker Hub for quick deployment. If you prefer not to install
directly on the host, you can pull and run an image. For example:

docker run -d --name my-valkey -p 6379:6379 valkey/valkey:8.1.4

This command will download the Valkey 8.1.4 image and run the server detached, exposing port 6379 to
the host 39 . The Docker image tag names usually correspond to Valkey versions (e.g., valkey:8.1.4 | or

valkey:7.2.11 forthe LTS 7.2 branch 40 41). There are also | -alpine | minimal images. Running Valkey
in Docker is convenient for testing and even production, though for production you’ Il want to mount a
volume for persistence (to store RDB/AOF files outside the container) and tune memory limits.

Important: If using Valkey Cluster in Docker, be aware that clustering doesn’ t work behind NAT or port
mapping without additional configuration. Valkey Cluster nodes need to know their externally reachable
address and require direct node-to-node communication. Typically you must run with | --net=host | in
Docker or use the cluster’ s ability to set an announce-ip . Standard master-replica setups (non-cluster)
do not have this issue and can run in Docker with normal port mapping. Always ensure the container’ s
ports (6379 and the cluster bus port 16379) are open as needed 42 43 .

https://valkey.io/topics/installation/#:~:text=sudo%20yum%20install%20valkey%20,doc
https://valkey.io/topics/installation/#:~:text=,doc
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/topics/installation/#:~:text=From%20source
https://github.com/valkey-io/valkey#:~:text=It%20is%20as%20simple%20as%3A
https://valkey.io/topics/installation/#:~:text=The%20first%20thing%20to%20do,cli
https://valkey.io/topics/installation/#:~:text=Another%20interesting%20way%20to%20run,commands%20and%20see%20their%20replies
https://valkey.io/#:~:text=%2A%20%60valkey%2Fvalkey%3A8.1.4%60%20%2A%20%60valkey%2Fvalkey%3A8.1.4,alpine3.22
https://valkey.io/#:~:text=Tags%3A
https://valkey.io/#:~:text=
https://valkey.io/topics/cluster-tutorial/#:~:text=Every%20Valkey%20Cluster%20node%20requires,port%60%20configuration
https://valkey.io/topics/cluster-tutorial/#:~:text=command%20port,won%27t%20be%20able%20to%20communicate

High-Availability Deployment Architectures

Valkey can be deployed in two primary HA modes: a Primary-Replica (master-slave) architecture
(optionally coordinated by Sentinel or an external tool) or Cluster mode (sharded cluster with replicas).
We’ |l overview how to set up each:

Primary-Replica Mode (with Keepalived or Sentinel)

In this mode, you have one primary (master) that handles all writes, and one or more replicas that
asynchronously replicate the primary. Replicas can serve read traffic (if your app is read-heavy) and stand
by to be promoted if the primary fails. By default, Valkey replication works just like Redis: replication is
asynchronous and non-blocking - the primary will send an initial sync (RDB snapshot) to a new replica
and then stream updates. Replicas connect to the primary using the replicaof <host> <port>

configuration (or issue the REPLICAOF command at runtime). You can verify replication status via | INFO

REPLICATION |- replicas will show | master_Llink_status:up when connected.

Keepalived + Virtual IP failover: One simple way to achieve automatic failover in a primary-replica pair
is using Keepalived with VRRP. In this setup, the primary and replica are both configured with Keepalived
to manage a floating virtual IP (VIP) address. The VIP always points to whichever node is the primary. If
the primary node goes down, Keepalived on the replica will automatically “takeover” the VIP, so that
clients connecting to the VIP seamlessly start hitting the replica. Of course, the replica must also be
promoted to primary role in this event - this can be done via a Keepalived notification script. For
example, a notify script can call | valkey-cli ' to run | REPLICAOF NO ONE on the replica when it becomes
the VIP holder, thereby making it a primary 44 45 . The original primary (when it comes back) would
then need to be set as a replica or kept out of rotation. Keepalived handles IP failover in a few seconds or
less, offering a very simple HA solution. However, this approach does not coordinate data replication
state - it’ s possible a few latest writes are lost if the primary failed before syncing to the replica (since
the failover is not synchronous). As the community notes, VIP failover is best for use cases like caching or
session stores where slight data loss is acceptable 46 47 . It provides high availability without needing a
third node (no quorum), but you sacrifice some consistency guarantees.

Sentinel for automatic failover: A more robust, official solution is Valkey Sentinel, which is analogous
to Redis Sentinel. Sentinel is a separate process (or set of processes) that monitors Valkey primaries and
replicas and handles failover logic 4 . You typically run an odd number of Sentinel instances (minimum
three for a quorum) on different hosts. They communicate and agree on the state of the primary. If the
primary fails (not responding to pings), the Sentinels will elect a leader to coordinate failover: one of the
replicas is chosen and promoted to become the new primary, and the other replicas (if any) are
reconfigured to follow the new primary 48 . Sentinel also updates clients with the new primary address -
client libraries that support Sentinel can query the Sentinels to get the current primary (this avoids
needing a VIP). To use Sentinel, you start the valkey-sentinel | executable with a config file that lists the
primary to monitor and quorum settings 49 50 . For example, a minimal sentinel.conf might contain:

sentinel monitor mymaster <primary_ip> 6379 2
sentinel down-after-milliseconds mymaster 60000
sentinel parallel-syncs mymaster 1

sentinel failover-timeout mymaster 180000

This tells Sentinels to monitor a primary named “mymaster” at the given address, with a quorum of 2
(meaning at least 2 Sentinel instances must agree the primary is down to trigger failover) 50 . The other
lines configure timing. When running, Sentinels announce themselves to each other and to replicas. They

https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=is_master%28%29%20%7B%20%5B%20,
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=log%20warn%20%27Failover%20failed%2C%20executing,REPLICAOF%20NO%20ONE%20fi
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=between%20two%20instances%20of%20an,nginx%29%20that%20uses%20Redis%2FValkey
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=It%20doesn%E2%80%99t%20provide%20a%20high,caches%2C%20user%20sessions%20and%20similar
https://valkey.io/topics/sentinel/#:~:text=,the%20new%20address%20to%20use
https://valkey.io/topics/sentinel/#:~:text=monitored%20Valkey%20instances.%20,If%20a%20failover
https://valkey.io/topics/sentinel/#:~:text=The%20Valkey%20source%20distribution%20contains,file%20looks%20like%20the%20following
https://valkey.io/topics/sentinel/#:~:text=The%20meaning%20of%20the%20arguments,statements%20is%20the%20following
https://valkey.io/topics/sentinel/#:~:text=The%20meaning%20of%20the%20arguments,statements%20is%20the%20following

will constantly check the health of the primary and also monitor the replication lag of replicas. In a
failover event, one Sentinel will send the target replica the command to | REPLICAOF NO ONE (making it
primary) and update the others. Sentinels then inform clients of the new primary via Pub/Sub or direct
responses to Sentinel queries.

Sentinel vs Keepalived: Sentinel requires running additional processes and client integration (or a
service discovery mechanism) to redirect to the new primary, whereas Keepalived provides a transparent
IP-level failover. Sentinel, however, can make a more informed choice of new primary (for example, it will
pick the most up-to-date replica), and it avoids split-brain by requiring quorum agreement for failover

51 52, Many users in production use Sentinel for Valkey/Redis HA since it’ s a proven design. Your
choice can depend on environment: if using cloud or containerized deployments, Sentinel is usually
preferred (or using cluster mode), whereas Keepalived could be simpler for on-prem bare-metal with
controlled network.

Deployment tip: If you use Sentinel, run at least 3 Sentinel instances (they are lightweight). They should
run on separate hosts or VMs for fault tolerance 53 . Also ensure your Valkey clients or your connection
layer can handle Sentinel; many popular client libraries (Redis-py, Jedis, etc.) have Sentinel support
(they’ Il ask Sentinel for the primary’ s address on connect, and auto-reconnect on failover). If not, you
may need to update client configuration manually on failover, or use a proxy layer. Additionally, secure
Sentinel as you would Valkey (Sentinel can be configured with an auth password so that it can
authenticate to Valkey primaries and also require auth from clients).

Cluster (Sharded Mode with Valkey Cluster)

For applications that need to scale beyond one node’ s memory or CPU and want a built-in sharding
solution, Valkey Cluster mode is ideal. Valkey Cluster allows you to run many Valkey nodes that share
data via sharding, and also provides high availability through replica failover within the cluster. A cluster
is composed of multiple shards (each shard is a set of one primary and N replicas) distributed across
nodes. Data keys are partitioned into 16384 hash slots using CRC16 hashing (same as Redis) > . Each
primary is responsible for a subset of those hash slots. For example, in a cluster with 3 primaries, one
might cover slots 0-5500, another 5501-11000, and another 11001-16383 54 . The cluster manager
ensures all slots are covered and no overlaps.

High availability in cluster: Within each shard, if the primary fails, one of its replicas is automatically
promoted by the cluster itself (this is coordinated by the remaining primaries via the cluster bus). So,
unlike Sentinel, you don’ t need external processes - the cluster nodes themselves detect failures and
perform failover. However, to avoid total cluster outage, a majority of primaries must be active. (If too
many primaries fail, some slots become unavailable and the cluster stops accepting writes until quorum
is restored). Typically, you’ d deploy cluster with at least 3 primaries and at least 1 replica each for safety
55 56 , For example, a 3 primary + 3 replica cluster can tolerate up to one primary failure (since its
replica will take over). If a primary and its replica both go down, that shard’ s slots are unavailable.

Cluster setup: To create a Valkey cluster, you start multiple | valkey-server | instances (either on one
machine with different ports or on multiple machines). Ensure | cluster-enabled yes | (or | --cluster-
enabled yes |CLI flag) is set in their configs, and each node has a unique | cluster-node-timeout and node
ID (Valkey will generate one). Then, you use the valkey-cli --cluster create | command to connect the
nodes together. For example, if you started 6 instances on ports 7000-7005 (3 intended primaries and 3
replicas), run:

https://valkey.io/topics/sentinel/#:~:text=Valkey%20Sentinel%20is%20a%20distributed,system
https://valkey.io/topics/sentinel/#:~:text=Sentinel%20itself%20is%20designed%20to,processes%20cooperating%20are%20the%20following
https://valkey.io/topics/sentinel/#:~:text=1,secure%20ways%20to%20deploy%20it
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20does%20not%20use,we%20call%20a%20hash%20slot
https://valkey.io/topics/cluster-tutorial/#:~:text=given%20key%2C%20we%20simply%20take,of%20the%20key%20modulo%2016384
https://valkey.io/topics/cluster-tutorial/#:~:text=To%20remain%20available%20when%20a,1%20additional%20replica%20nodes
https://valkey.io/topics/cluster-tutorial/#:~:text=However%2C%20when%20the%20cluster%20is,continue%20if%20node%20B%20fails

valkey-cli --cluster create 127.0.0.1:7000 127.0.0.1:7001\
127.0.0.1:7002127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 \
--cluster-replicas 1

This will auto-configure a cluster with 3 primaries and 3 replicas (the | --cluster-replicas 1| option
means one replica per primary) 57 58 . The tool will assign slots to primaries evenly and pair each
replica to a primary. You’ Il be prompted to confirm, and upon success you should see “[OK] All 16384
slots covered” 59 . After that, the cluster is live; the nodes will know about each other and exchange

heartbeat messages over the cluster bus (which uses the port 10000+offset, e.g. 16379 if data port is 6379)
60 |

Using the cluster: To talk to a clustered Valkey, your client must be cluster-aware (able to follow
redirects). If you use | valkey-cli |, you can specify | -c | flag for cluster mode and connect to any one
node: the CLI will automatically follow redirections for commands that are hashed to a different node 61

62 , Most Valkey/Redis client libraries have cluster support (for example, Jedis or Lettuce in Java, redis-
py in Python, etc., can map keys to the right node). The cluster presents a single unified keyspace spread
across nodes - but note that multi-key operations are limited to keys in the same hash slot (you can use
hash tags| {...} |in keys to force certain keys to the same slot if needed) 63 . If you attempt a transaction
or Lua script touching keys on different slots, Valkey will return a cross-slot error.

Cluster management: You can reshard or add/remove nodes from a Valkey cluster using commands like

CLUSTER MEET |, | CLUSTER REPLICATE , and CLUSTER RESHARD |. The valkey-cli --cluster utility also has
subcommands to assist with rebalancing slots and check cluster consistency. In production, you should
also set up node configuration such that each node knows its external IP/port (especially if running in
different networks or containers). Use the | cluster-announce-ip | and | cluster-announce-port | settings if
needed. Monitor the cluster with | CLUSTER INFO | - it reports stats like cluster_state (ok/fail), number of
slots, etc. Additionally, each node’ s INFO REPLICATION will show its role in the cluster (a node in cluster
still reports itself as master or slave (replica) in the replication section).

Cluster vs Sentinel: Cluster mode is a more scalable solution (it shards data and can handle more data/
requests by adding nodes). It’ s typically used when you have large datasets or need to distribute load.
Sentinel (primary-replica) is simpler and might be used when you want strong consistency on a single
shard (though keep in mind both Sentinel and Cluster use asynchronous replication, so neither
guarantees zero data loss - for absolute consistency, an alternative approach like MemoryDB’ s multi-AZ
transaction log is used, but that’ s beyond our scope). If you start small, you can begin with a single
primary and replicas (Sentinel-managed) and later migrate to cluster if needed. In fact, some cloud
services allow migration from a non-clustered setup to a clustered one (with “cluster mode enabled”)
when scaling up.

Administration and Monitoring Guide

Running Valkey in production requires attention to certain metrics and behaviors to ensure it’ s healthy
and performing well. Here we cover important things to monitor and how to verify normal operation.

https://valkey.io/topics/cluster-tutorial/#:~:text=valkey,replicas%201
https://valkey.io/topics/cluster-tutorial/#:~:text=%60valkey,see%20a%20message%20like%20this
https://valkey.io/topics/cluster-tutorial/#:~:text=instances%20will%20be%20bootstrapped%20into,see%20a%20message%20like%20this
https://valkey.io/topics/cluster-tutorial/#:~:text=Every%20Valkey%20Cluster%20node%20requires,port%60%20configuration
https://valkey.io/topics/cluster-tutorial/#:~:text=
https://valkey.io/topics/cluster-tutorial/#:~:text=,127.0.0.1%3A7002%3E%20get%20hello
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20supports%20multiple%20key,a%20feature%20called%20hash%20tags

Important Metrics to Monitor

You can retrieve a wealth of runtime metrics from Valkey using the | INFO | command. Key sections and
metrics to watch include:

+ Memory Usage: In | INFO Memory , check | used_memory | (bytes in use) and | used_memory_peak .
Compare | used_memory to your | maxmemory configuration (if set). If |used_memory is near
maxmemory | and you have an eviction policy, keys will be evicted (monitor | evicted_keys | counter
in INFO Stats). Also watch used_memory_rss | (resident set size) versus |used_memory . A much
higher RSS than used_memory indicates fragmentation - Valkey’ s active defragmentation (if
enabled) will try to address this. In Valkey 8.1, active defrag was improved to reduce latency
impact 6 , but you still want to ensure fragmentation is under control. The MEMORY DOCTOR
command can provide suggestions if memory usage is suboptimal 65 .

- CPU and Latency: Valkey itself doesn’ t expose CPU usage via INFO, so use external OS
monitoring for CPU load. High CPU could indicate heavy command processing. Latency can be
monitored via the internal latency monitor: if | latency-monitor-threshold is set (e.g. </ 100 ms),
Valkey logs spikes. Use | LATENCY LATEST to see recent events; in Valkey 8.1 this output now
includes how many spikes and total time spent in them 66 . Also check | slowlog-get for any slow
commands recorded (by default, commands taking over 1 millisecond, configurable via | slowlog-
Log-slower-than). A growing slow log indicates some operations are taking long (maybe large
data transfers or blocking commands). The new ' COMMANDLOG | (if enabled) will help track large
payloads too 67 .

+ Clients and Connections: |INFO Clients shows | connected_clients| and potentially

blocked_clients | (clients waiting on blocking commands like BLPOP). If blocked_clients is high,

it may indicate usage of blocking operations - ensure that’ s expected. If you see a high number

of connected clients, monitor for hitting connection limits (maxclients | setting). Also, look at

connections_received (cumulative) and | rejected_connections |- any rejected connections could
mean you hit maxclients or the backlog queue was full.

+ Persistence: If you use AOF or RDB snapshots, monitor those. 'INFO Persistence gives
rdb_last_bgsave_status | and timestamp, as well as AOF current size, last rewrite time/status. If
rdb_last_bgsave_status:ok = and | aof_last_write_status:ok, then persistence is working

normally. A failure here (status = err) could indicate disk full or permission issues - critical to
catch, because it means your data isn’ t being persisted. Also check aof_pending_rewrite or
rdb_bgsave_in_progress | to see if a background save is currently running. Monitoring the interval
between successful snapshots (if using periodic RDB) ensures you have recent backups.

+ Replication health: On a primary, INFO Replication lists replicas and their state. Each replica
line has | state=online and laginfo. On a replica, INFO Replication shows master_Llink_status:up
when connected. If a replica’ s | master_Llink_down_since_seconds | is not 0, it’ s disconnected -
investigate network or primary status. The | repl_backlog_size | and | repl_backlog_histlen on
primary indicate the circular buffer for replication; if a replica is briefly disconnected, a sufficient
backlog can avoid full resync. Ensure master_last_io_seconds_ago | on replicas is low (meaning
they’ re actively receiving data). A large lag can indicate the replica can’ t keep up or network
problems.

+ Evictions and Keyspace: In INFO Stats , watch | evicted_keys | and | expired_keys . Evicted keys
count means your maxmemory policy is evicting data - if this is not expected (e.g., Valkey being

https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Active%20Defrag%20has%20been%20improved,dramatic%20reduction%20in%20tail%20latencies
https://valkey.io/topics/admin/#:~:text=,commands%20to%20assist%20in%20troubleshooting
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Improved%20Latency%20Insights
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Extending%20the%20Slowlog%20to%20Commandlog

used as cache, some evictions are normal; but if it’ s a primary data store, evictions could be data
loss). | expired_keys | shows how many keys reached TTL expiry. Also, check | keyspace | section at
the end of INFO (e.g., | db0: keys=12345, expires=50, avg_ttl=...). This tells the number of keys
per DB and how many have expiry. A sudden drop in keys might mean a flush or big expiration
event occurred. Ensuring the key count is within expected range is a good health indicator (for
instance, if it unexpectedly goes to 0, that’ s a serious issue unless a flush was intended).

+ Errors: Monitor the Valkey log file (usually | /var/log/valkey. log | or stdout). By default, Valkey
logs warnings and higher. You’ d want to catch things like 00M command not allowed errors (if a
write was denied due to out-of-memory and no eviction), or replication errors. With Valkey 8.1’ s
new log format options, you can parse logs more easily if structured logging is enabled 25 . Also,
consider enabling the | notify-keyspace-events | if you need to monitor key events via Pub/Sub
(this allows an external monitor to subscribe to events like expired keys, evictions, etc., which can
be useful for auditing).

Ensuring Healthy Operation

To check that Valkey is running normally, you can perform a few basic health checks: - PING/PONG: The
simplest check is | PING | command as shown earlier. A healthy Valkey should respond with A PONG

immediately 37 . Many load balancers or health-check scripts use this. - INFO and Stats Check: A script
or monitoring system can periodically retrieve INFO and check key fields. For example, ensure

uptime_in_seconds | is increasing (resetting would indicate a crash and restart). Ensure
mem_fragmentation_ratio isn’ textremely high (above, say, 2 or 3 could indicate fragmentation issues).
Ensure replication link is up if applicable, etc. - Latency Check: Use the built-in | LATENCY DOCTOR

command which analyzes latency samples and reports if there are issues (like if the latency monitor has
detected disk 1/0O spikes, it will point out “Disk I/O overloaded” or similar). This is a quick way to get
Valkey’ s own assessment of any latency problems 65 . - Operational Tests: In a non-production
environment or during maintenance, you might do a quick set/get test of critical data. For instance, set a
key and retrieve it to ensure read/write path works. If using persistence, you could test a | BGSAVE | and see
if it completes successfully (the command replies “OK” and later INFO shows last save time updated). -
Monitoring Tools: Integrate Valkey with monitoring solutions. Many existing Redis monitoring plugins
work out of the box with Valkey (since INFO format is same). Grafana dashboards for Redis can be
repurposed for Valkey by just changing the data source. Keeping graphs of memory, ops/sec,
connections, etc., over time helps spot anomalies.

If Valkey is not “running normally” , symptoms might include: high latency responses, timeouts,
memory allocation errors (check log for “Cannot allocate more memory” if overcommit is an issue),
failing to persist to disk, or crashing. If a Valkey process crashes, it usually writes a crash log with stack
trace - investigate that and upgrade if it' s a known bug (Valkey’ s rapid development means many
issues get fixed in newer releases - check the release notes). Running the latest stable 8.x version is
recommended for production.

Backup and Recovery

Having backups and a strategy for recovery is crucial if you use Valkey as a data store (beyond a pure
cache). Valkey offers two persistence mechanisms: RDB snapshots and AOF logs (or a combination of
both), similar to Redis. Choosing one or both depends on your durability needs.

- RDB Snapshots (Point-in-Time Backups): RDB (Redis Database) snapshots are binary dumps of
the database at a moment in time 68 . By default, Valkey’ s configuration might save snapshots

https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%208,files%20by%20log%20collecting%20systems
https://valkey.io/topics/installation/#:~:text=The%20first%20thing%20to%20do,cli
https://valkey.io/topics/admin/#:~:text=,commands%20to%20assist%20in%20troubleshooting
https://valkey.io/topics/persistence/#:~:text=,RDB%20in%20the%20same%20instance

at intervals (e.g., the default | save 900 1 means every 900 seconds if at least 1 key changed, etc.).
You can customize the | save | schedule in | valkey.conf . You can also trigger snapshots manually
via the | SAVE | (synchronous, blocks server) or | BGSAVE | (background save) commands. Backup
with RDB: To take a backup, you can run | BGSAVE | and wait for rdb_bgsave_in_progress:0 |in INFO
or a log message indicating completion. This produces a | dump.rdb file (or whatever dbfilename
is set to) in the configured directory 6 . You should copy this file to safe storage (e.g., off-server or
to cloud storage) - RDB files are compact and ideal for archival backup 7 . For example, some
setups do hourly RDB snapshots and ship them to S3, keeping a history of 24 hours, etc. The RDB
approach is very efficient for disaster recovery since it’ s a single file you can move around 71 .
However, data loss can be up to the snapshot interval - e.g., if you snapshot every 5 minutes, a
crash could lose up to 5 minutes of latest data 72 .

- AOF (Append Only File) Logging: AOF logs every write command the server receives to a file, so
you can replay it to reconstruct the dataset 68 . AOF can be configured to fsync data to disk every
write, every second, or never (let OS flush). The default (every second) strikes a balance - you’ d
lose at most 1 second of writes on a crash 73 . AOF tends to be larger than RDB and a bit slower on
writes (due to logging), but provides better durability (no large gaps in data). Backup with AOF: If
using AOF, you should still periodically copy the AOF file somewhere safe. Also monitor AOF size;
Valkey can auto-rewrite (compact) the AOF in background when it grows too large 74 . In a
recovery scenario, the AOF will be replayed automatically on server start to rebuild state. Ensure
the AOF file is not corrupted - use | valkey-check-aof | tool if in doubt (it can fix a truncated AOF)

75 . One advantage of AOF: you can open it (it' s plain text commands) to extract data or even
undo recent mistakes (e.g., if someone ran a FLUSHALL, you could theoretically edit that out of
the AOF if you catch it before rewrite) 76 .

- Mixing RDB and AOF: Valkey allows enabling both RDB and AOF for maximum safety 77 . In this

mode, on restart Valkey will prefer to load AOF (for most up-to-date state) but having an RDB gives

a fall-back backup. Many production deployments use AOF (appendfsync every sec) plus RDB

snapshots every now and then. That way, you have the AOF for point-of-failure recovery (minimal

data loss), and RDB for easier offsite backups and faster restart (RDB loads faster than AOF replay)

78 79, If using both, be mindful of performance (there’ s overhead in maintaining two
persistence files).

Recovery: To restore from a backup RDB, simply stop Valkey, replace the ' dump.rdb | file in its working
directory with your backup copy, and start Valkey. It will detect the RDB and automatically load it into
memory 8 81, If using Docker, you’ d copy the RDB into the container’ s data mount before starting

82 81, To restore from AOF, similar - place the AOF file and ensure | appendonly vyes |is in config, then
start Valkey and it will replay the AOF. Always keep backup copies of your RDB/AOF files separate from
the live instance, to avoid accidental override. A best practice is to snapshot a backup, transfer it off the
server, then verify the backup by loading it into a staging Valkey instance (to ensure it’ s not corrupt and
contains expected data).

Replication as live backup: Another approach to consider is running a replica solely for backup
purposes. Because Valkey replication can be used across data centers, you could have a replica in a
remote location. That replica could be configured with | replica-read-only yes (default) and you never
promote it unless needed. It will continuously receive updates. You can even periodically | BGSAVE | on that
replica to produce RDB backups without loading the primary. In case the primary data center is lost, you
have a replica already up-to-date which you can promote (and since it’ s asynchronous replication,
some last transactions might be lost, but similar to AOF 1-second window if network goes down).

10

https://valkey.io/topics/persistence/#:~:text=By%20default%20Valkey%20saves%20snapshots,commands
https://valkey.io/topics/persistence/#:~:text=RDB%20advantages
https://valkey.io/topics/persistence/#:~:text=,that%20will%20do%20all%20the
https://valkey.io/topics/persistence/#:~:text=,and%20may%20result%20in%20Valkey
https://valkey.io/topics/persistence/#:~:text=,RDB%20in%20the%20same%20instance
https://valkey.io/topics/persistence/#:~:text=AOF%20advantages
https://valkey.io/topics/persistence/#:~:text=,the%20server%2C%20removing%20the%20latest
https://valkey.io/topics/persistence/#:~:text=,tool%20that%20ships%20with%20Valkey
https://valkey.io/topics/persistence/#:~:text=,the%20server%2C%20removing%20the%20latest
https://valkey.io/topics/persistence/#:~:text=,RDB%20in%20the%20same%20instance
https://valkey.io/topics/persistence/#:~:text=be%20transferred%20to%20far%20data,resynchronizations%20after%20restarts%20and%20failovers
https://valkey.io/topics/persistence/#:~:text=process%20needs%20to%20do%20in,resynchronizations%20after%20restarts%20and%20failovers
https://valkey.io/topics/migration/#:~:text=This%20is%20the%20easiest%20and,tradeoffs%20for%20this%20method%20are
https://valkey.io/topics/migration/#:~:text=8
https://valkey.io/topics/migration/#:~:text=7,using%20one%20of%20the%20following
https://valkey.io/topics/migration/#:~:text=8

Finally, test your backups! Nothing is worse than assuming a backup works and finding out it’ s
corrupted or incompatible. Do test restores. Note that Valkey 7.x RDB files are compatible with Valkey 8.x
(so upgrading doesn’ t break persistence), but they are not compatible with Redis “Community 7.4+”
(the closed-source ones) 8 84 . As long as you stay within Valkey or Redis 0SS, you can load RDB files
across versions (forward compatibility is generally maintained; e.g., you can load a Redis 6 RDB into
Valkey 8). For AOF, the format is simply commands - also generally compatible.

Performance Tuning

Valkey is fast out-of-the-box, but to get the best performance and avoid common bottlenecks, consider
the following tuning tips:

System and OS Tuning: - Memory Overcommit: On Linux, enable memory overcommit (so the kernel
doesn’ t erroneously deny large allocations). Set | vm.overcommit_memory = 1| in| /etc/sysctl.conf | and
apply it 85 8 . This avoids issues when Valkey forks the process for RDB saves - forking can fail if the
kernel is strict about overcommit and thinks there isn” t enough available memory. - Transparent Huge
Pages (THP): Disable THP, as it can cause latency spikes and memory usage bloat for in-memory
databases. You can disable it by | echo never > /sys/kernel/mm/transparent_hugepage/enabled |on startup
87 . THP can make memory allocation slower and unpredictable, so it s recommended off for Valkey/
Redis. - Swap: Ideally, avoid swapping as it will hurt performance badly. However, it is suggested to have
some swap enabled so the kernel doesn’ t OOM-kill Valkey if memory is exhausted 88 . A small swap can
provide a safety net (Valkey will try not to use it much if maxmemory | is set properly). Monitor for any
swapping - if you see it, you need to either lower Valkey memory use or increase RAM. - Networking: For
best results, run Valkey on a reliable low-latency network. If using clusters across multiple racks or AZs,
network delays can affect throughput. If using high connection counts, consider tuning Linux TCP stack
(e.g., ephemeral port range if many short connections, or increase backlog queue via
tcp_max_syn_backlog). In cloud environments, make sure to use enhanced networking drivers if
available.

Valkey Configuration Tuning: - Maxmemory & Eviction: If you use Valkey as a cache, set maxmemory to a
value slightly below total available RAM (to leave room for overhead and fragmentation) 8 . E.g.,on a 10
GB instance, maybe set maxmemory to 8 or 9 GB 9% . Choose an eviction policy (allkeys-Lru is
common for cache, or noeviction | if you prefer failures over evicting). If Valkey is a primary store, you
might run without maxmemory to avoid evictions, and rely on monitoring to not exceed capacity. -
Persistence and Disk: If you have heavy write load and persistence enabled, tune fsync appropriately. AOF
with | everysec |is usually fine. If latency is critical, use a fast SSD for persistence. For RDB, consider using
diskless replication (so that when a new replica connects, the primary sends RDB over socket rather
than saving to disk first) to reduce disk I/O - enable with | repl-diskless-sync yes . Also, if using AOF,
adjust | auto-aof-rewrite-percentage and | auto-aof-rewrite-min-size so that the AOF rewrite
(BGREWRITEAOF) happens at a good time (e.g., when AOF has grown 100%+ of original size). Large fork
operations can momentarily stop the world, so plan snapshotting during low traffic if possible. - Threads:
Valkey 8+ can utilize 1/0 threads. By default, io-threads is 1 (disabled). If you have spare CPU cores and
see CPU saturation on a single core (with networking or TLS overhead), you can try enabling, say, 4 /O
threads (| io-threads 4) and | io-threads-do-reads yes (to use threads for reads). This can increase
throughput on multi-core systems for network-heavy scenarios 11 . But test this under your workload -
some workloads might not benefit if they are single-key small operations (as Redis/Valkey are very
efficient single-threaded for those). - Client Output Buffer: If you use Pub/Sub or have clients that might
slow-consume data, watch the client output buffer limits (configurable per client type). This prevents one
slow subscriber from consuming too much memory and potentially crashing the server. You can adjust
client-output-buffer-Llimit settings if needed (for example, increasing the limit for pubsub if large

11

https://valkey.io/topics/migration/#:~:text=You%20can%20migrate%20a%20Redis,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=Redis%20Community%20Edition%20,not%20covered%20by%20this%20document
https://valkey.io/topics/admin/#:~:text=stress%20testing%20is%20performed%2C%20and,most%20production%20deployments%20are%20run
https://valkey.io/topics/admin/#:~:text=,error%20on%20Linux%3F%20for%20details
https://valkey.io/topics/admin/#:~:text=,huge%20pages%20for%20additional%20context
https://valkey.io/topics/admin/#:~:text=Memory
https://valkey.io/topics/admin/#:~:text=swapping%20is%20enabled%2C%20you%20can,spikes%20and%20act%20on%20them
https://valkey.io/topics/admin/#:~:text=,it%20to%208%20or%209
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions

bursts are expected, or lowering it to be safe). - Other Configs: Ensure | tcp-backlog | is set high (the
default is 511, you can increase if expecting large connection bursts). If using cluster, ensure | cluster-
node-timeout is tuned - default 5 seconds might be fine, but in highly latent networks you might increase
to avoid false failovers. For replication, if the primary is high volume, increase
replication-backlog-size to afew MBs to handle replicas briefly falling behind.

Application-Level Optimization: - Pipelining: Just as with Redis, using pipelining can greatly enhance
throughput by reducing round-trip latency cost 91 . Valkey supports pipelining natively - clients can send
multiple commands without waiting for replies one by one, and then read all replies. If your use case
allows, batch operations into pipelines (especially in high-latency network situations). - Data Structures:
Choose appropriate data types to avoid inefficiency. For example, instead of having a million keys each
storing a small counter, consider using a Hash that holds those counters as fields (if it makes sense for
your access pattern). This can be more memory-efficient (one key vs many) and certain operations like
retrieval of many fields are faster than many GETs. But note that extremely large Hash or Sorted Set
objects can also become a bottleneck for operations that traverse them. There is a balance - Valkey’ s
new hashtable design reduces per-key overhead, but having fewer keys might still help reduce overhead
operations. - Avoid Hot Keys: If one key is extremely heavily accessed/modified, it could become a
throughput bottleneck (since all operations on a given key are processed serially by one thread). Try to
distribute load. For example, using sharding (in cluster mode) or logically partitioning data (like user:
1001.... keys spread by user ID). If using cluster, the hashing is automatic but ensure your keys have
enough diversity in names. - Lua Scripting vs Multi-roundtrips: If you have a sequence of operations that
must be atomic, you can either use a MULTI/EXEC transaction or a Lua script (EVAL). Lua scripts run
synchronously in Valkey, which can block other operations, so keep them small and efficient. With
Valkey’ s future support for other scripting engines (WASM, etc.), you may have more choices 92 , but
general advice is the same as with Redis - don’ trun long loops in Lua that lock the server.

« Active Defragmentation: If you have a long-running Valkey instance where memory allocations/
deallocations might lead to fragmentation (e.g., lots of deleting and adding keys), consider
enabling activedefrag yes in config. The active defrag process runs in the background to
compact memory. Valkey 8.1 improved active defrag to cap pause times under 1 millisecond and
be smarter about fragmentation checking 4 . This can help avoid wasted memory and
performance issues due to fragmentation. Monitor | mem_fragmentation_ratio |to decide if defragis
needed (a ratio >> 1.0 indicates fragmentation).

Benchmarking and Testing: Before going to production, it” s wise to benchmark Valkey under expected
workload. Use the included | valkey-benchmark | tool to generate test load 93 . It can simulate GET/SET or
other command mixes at a given throughput. Valkey-benchmark is the same as redis-benchmark but
updated for Valkey. This gives you an idea of achievable throughput and latency on your hardware. Also
test failover scenarios: if using replication, intentionally fail the master and see how the replica (or
Sentinel/cluster) handles it, measure downtime. If using cluster, kill a node and see if the application
experiences errors or recovers properly (make sure your retry logic in the app is in place).

In summary, Valkey can be tuned at many levels - the defaults are reasonable for general use, but for a
high-throughput or large deployment, adjusting memory, threading, kernel settings, etc., will ensure
smooth operation. The Performance Optimization Methodology post on Valkey’ s blog (May 27, 2025)
goes in-depth on systematically identifying bottlenecks 9 , which can be a great resource as you fine-
tune your Valkey setup.

12

https://valkey.io/topics/#:~:text=,notifications%20of%20keyspace%20events%20via
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Programmability
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Active%20Defrag%20has%20been%20improved,dramatic%20reduction%20in%20tail%20latencies
https://valkey.io/topics/#:~:text=,to%20debug%20Valkey%20server%20processes
https://valkey.io/blog/#:~:text=%2A%20,Part%201

Migration and Upgrade

This section covers two scenarios: migrating from Redis to Valkey, and upgrading Valkey itself (e.g., from
7.2 to 8.x, or 8.x to newer versions).

Migrating from Redis to Valkey

One of Valkey’ s goals is to be a seamless replacement for Redis OSS. If you have an existing Redis
deployment, you can migrate to Valkey with minimal downtime. The compatibility is very high: Valkey
7.2.x is basically Redis 7.2 under the hood, and Valkey 8.x extends that. According to the official guide,
Valkey is compatible with all Redis open-source versions 2.x through 7.2 - migrating is essentially like
upgrading Redis to a new version 83 9 . (Redis “Community Edition” 7.4 and later are not open
source and use a different persistence format not compatible with Valkey, so those require special
migration steps not covered here % .)

Common migration approaches: - In-Place Physical Migration (Copy RDB): The simplest method is to
take a snapshot of your Redis data and start Valkey with it. For example, if you run | SAVE | on Redis to
produce a dump.rdb 97 9 | you can then stop Redis, copy the | dump.rdb | file to Valkey’ s data
directory, and start the Valkey server. Valkey will load the RDB and your data will be available 8 81,
This method is fast and straightforward - essentially downtime is just the restart time. However, ensure
no writes occur during the cut-over, otherwise those will be lost (to avoid that, you’ d disable writes to
Redis, do a SAVE, then switch). The migration guide notes you should disconnect all clients from Redis
before creating the RDB snapshot to prevent changes during backup 9 . You can verify the key count
before and after to confirm all data migrated (use INFO KEYSPACE) 100 101,

+ Minimal-Downtime Migration via Replication: This approach treats Valkey as a replica of your
Redis instance, then fails over. Valkey’ s replication protocol is compatible with Redis 7.2 and
earlier, so you can connect a Valkey server as a replica to an existing Redis master 102 103 | The
steps would be: start a Valkey server (with | replicaof <redis-ip> <redis-port>). It will connect to
Redis, do a full sync (download RDB from Redis) and then start receiving live replication stream

104, Let it catch up until it’ s consistently replicating (check master_Llink_status:up | on Valkey
INFO). Then, to cut over with minimal downtime, you would pause writes on Redis (if possible, or
use a maintenance window with no writes), then promote the Valkey replica to primary
(REPLICAOF NO ONE on Valkey) and direct your application to Valkey. You could also use a tool like
Sentinel to handle this promotion, but since it’ s a one-time migration, manual is fine. The
downtime in this case can be just a few seconds (the time to switch client connections). This
approach is more complex but avoids extended downtime and ensures near-zero data loss (since
Valkey was live replicating, it has virtually all writes). Note: once Valkey is primary, the Redis
master should no longer be written. You can either decommission it or make it a replica of Valkey
if you want a rollback strategy. The migration guide provides detailed steps for setting up such
replication and then switching over 102 105

+ Key-by-Key Migration: If for some reason binary compatibility is an issue or you only want to
migrate a portion of data, you can also script a migration at the application level. For example,
using | SCAN | on Redis and piping data into Valkey via ' valkey-cli | or a custom script. This is
slower and usually unnecessary, but it’ s an option for complex scenarios (the Valkey docs
mention “Migrating specific keys” 102 104), There are also tools that can live-copy between
Redis instances (e.g., redis-shake, etc.) which might support Redis->Valkey since the protocols are
the same.

13

https://valkey.io/topics/migration/#:~:text=You%20can%20migrate%20a%20Redis,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=7,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=documentation
https://valkey.io/topics/migration/#:~:text=,written%20to%20that%20host%20directory
https://valkey.io/topics/migration/#:~:text=4,to%20create%20the%20backup%20file
https://valkey.io/topics/migration/#:~:text=This%20is%20the%20easiest%20and,tradeoffs%20for%20this%20method%20are
https://valkey.io/topics/migration/#:~:text=8
https://valkey.io/topics/migration/#:~:text=,connections%20before%20starting%20the%20migration
https://valkey.io/topics/migration/#:~:text=2,6%2C286%20keys%20in%20the%20database
https://valkey.io/topics/migration/#:~:text=10,you%20obtained%20in%20step%202
https://valkey.io/topics/migration/#:~:text=To%20migrate%20a%20standalone%20Redis,you%20have%20the%20following%20options
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/#:~:text=To%20migrate%20a%20standalone%20Redis,you%20have%20the%20following%20options
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/#:~:text=To%20migrate%20a%20standalone%20Redis,you%20have%20the%20following%20options
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys

After migrating, validate everything on Valkey: key counts, data correctness (sample some values),
performance, etc. If using modules (e.g., you had Redis with JSON module, and now Valkey with Valkey-
JSON), ensure the data moved properly - RDB files generally include module data that Valkey can load if
the same module (or compatible version) is present.

Upgrading Valkey Versions

Valkey follows semantic versioning (major.minor.patch). Major releases (8.0, 9.0) may have breaking
changes or big features, but so far the upgrade from 7.2 to 8.0 was smooth in terms of compatibility (the
biggest difference was introducing new optional features). Here’ s how to approach upgrades:

+ In-Place vs Rolling Upgrade: If you can afford a small downtime, the simplest is stop the Valkey
server and start the new version binary pointing at the same data file. Valkey 8 could directly load
a RDB created by Valkey 7.2 (since it was a fork of Redis 7.2, RDB version 9 or 10), so a straight
restart with the new binary works 106 . For minimal downtime in a primary-replica setup or
cluster, do a rolling upgrade. In replication mode, you can upgrade one node at a time: e.g., bring
up a new Valkey version as a replica of the old primary, let it sync, then promote it and switch
over, similar to the migration steps. The administration guide explicitly suggests this: run a new
Valkey instance as a replica of the old, then fail it over as a way to avoid downtime on upgrade
107 108 , This also serves as a test that the new version can sync from the old one properly.

- Sentinel or Cluster Rolling Upgrade: If you use Sentinel-managed HA, you can upgrade one
replica at a time: take a replica down, upgrade it, bring it back. Once all replicas are on new
version, do a manual failover (so one of the new-version replicas becomes primary), then upgrade
the remaining old primary (now a replica) 109. This ensures you always have the cluster
operational. In a Valkey Cluster, you similarly upgrade node by node. Valkey cluster is designed to
allow mixed versions temporarily (for example, you can have some nodes on 8.0 and some on 8.1
during an upgrade, but it’ s best to keep that window short). Always check the release notes for
any specific instructions - e.g., if upgrading to Valkey 9.0, there might be special considerations if
you used certain features (like new module data types).

- Backup before upgrade: Needless to say, backup your data (RDB/AOF) before upgrading. While
downgrading is generally possible (Valkey 8 can dump RDB that Valkey 7 could read, etc.), it’ s
safer to have the snapshot. The release notes often indicate “upgrade urgency” and whether
you can directly downgrade if needed 110 . For example, Valkey 8 had no changes to RDB format
from 7.2, so one could technically switch back if needed. But if you use new features (like when 9.0
adds hash field TTLs), those data structures might not be understood by older versions.

- Testing new version: It’ s wise to test the new version in staging with your application traffic.
Ensure that performance characteristics haven’ t changed unexpectedly or that a new config
default won’ t surprise you. For instance, if 9.0 enables some new feature by default, make sure it
doesn’ t affect your workload. Read the Release Notes (Valkey provides them on GitHub for each
release 11 111),

Valkey being a relatively new fork means the pace of improvements is high, so upgrading frequently can
give you big benefits (e.g., memory savings in 8.1, new functionality in 9.0). The community is actively
fixing bugs too, so staying on the latest patch release of your major version is recommended. Always
monitor after an upgrade for any issues (like memory usage patterns or logs). So far, community reports
of upgrades (e.g., some blog posts on “Upgrade Stories from the Community” 112) indicate the process
is quite painless, especially compared to the complexity of upgrading some other databases.

14

https://cloud.google.com/memorystore/docs/valkey/supported-versions#:~:text=Supported%20versions%20,instance%20to%20any%20newer%20version
https://valkey.io/topics/admin/#:~:text=Follow%20these%20steps%20to%20avoid,downtime
https://valkey.io/topics/admin/#:~:text=,is%20replying%20to%20your%20commands
https://valkey.io/topics/admin/#:~:text=If%20you%20are%20using%20Valkey,finally%20promote%20the%20last%20replica
https://github.com/valkey-io/valkey/releases#:~:text=Valkey%209.0.0,0%2C%20with%20performance%20improvements
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%208,1%20GA%20release
https://valkey.io/blog/#:~:text=%2A%20,the%20Community%2C%20Volume%201

Reference and Utility Commands; Client Tools

This section provides a quick reference to common administration commands and the client libraries
available for Valkey in different programming languages.

Common Administration Commands (valkey-cli)

The |valkey-cli tool is your go-to for managing and troubleshooting Valkey from the shell. Here are
some essential commands (many we’ ve mentioned above):

+ PING: Basic reachability test. | valkey-cli ping|should return PONG | 37 .

+ INFO: Retrieves server info. You can do | valkey-cli info orspecify a section:| valkey-cli info
memory | etc. This prints various metrics and settings.

+ CONFIG GET / SET: To view or change configuration at runtime. For example, | valkey-cli config
get maxmemory | shows the current value, and | valkey-cli config set maxmemory 10gh would
change it (if allowed). Not all configs are mutable at runtime, but many are.

+ CLIENT LIST / CLIENT KILL: To inspect connected clients or kill a hung client connection. Useful if
you suspect a client is stuck or causing issues.

+ SLOWLOG: slowlog get 10 |shows last 10 slow commands logged.

« LATENCY: latency latest shows recent latency events; latency doctor provides an analysis
with tips.

- BGSAVE /| BGREWRITEAOF: Triggers persistence events manually. Use | BGSAVE | to force an RDB
snapshot now. Use | BGREWRITEAOF | to trigger AOF compaction.

+ FLUSHALL / FLUSHDB: Wipes database (use with caution!). Sometimes used in development or to
clear cache entirely.

+ DEBUG: (Use carefully, mostly in non-production) e.g.,| DEBUG SEGFAULT | will crash the server to
test persistence (should never run in prod).

- MODULE LOAD / UNLOAD: Dynamically load a module (.so file) into a running Valkey. For
instance, MODULE LOAD /path/to/valkeyjson.so . Note that modules must match the Valkey
version’ s API. Official modules are usually loaded via config at startup rather than CLI in
production.

In general, any Redis command you know is available in Valkey (unless it was an enterprise-only
command in Redis, which few are). The Valkey Command Reference is comprehensive - it lists all
commands alphabetically and by group, including those added by modules 113 . For example, after
loading Valkey JSON module, commands like | JSON.SET ,| JSON.GET ' become available.

One nice thing: Valkey’ s documentation is available as man pages if you install | valkey-doc . For
instance, you can do man HSET | to read about the HSET command usage 32 , or | man valkey.conf for
config file syntax.

Client Libraries and Integration

Because Valkey is protocol-compatible with Redis, existing Redis clients can be used for Valkey
(especially those supporting Redis 7.x features) 9 . However, the Valkey project also provides and
recommends certain client libraries that are tested with Valkey and may offer extra features:

+ Python: You can use redis-py | (the standard Redis client in Python) with Valkey. In fact, | pip
install valkey provides valkey-py, which is essentially the Valkey-specific fork of redis-py 114 .
There is also Valkey GLIDE for Python (multi-language client; more on GLIDE below) 115 . For most
purposes, you can continue using | redis.StrictRedis or Redis clientin Python - just point it to

15

https://valkey.io/topics/installation/#:~:text=The%20first%20thing%20to%20do,cli
https://valkey.io/commands/
https://valkey.io/topics/#:~:text=Core%20Concepts
https://valkey.io/topics/installation/#:~:text=,doc
https://valkey.io/clients/#:~:text=This%20page%20includes%20only%20clients,please%20refer%20to%20this%20link
https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=valkey%20GLIDE

your Valkey endpoint. If you want to use new Valkey-specific commands (like | SET IFEQ | or new
modules), make sure your client version is updated if command constants are needed (or use the
raw | execute_command | method to send any command string).

+ Java: Popular Redis clients like Jedis or Lettuce work with Valkey. Additionally, the Valkey project
offers valkey-java (an official Java client similar to Jedis) 116 117 and it endorses Redisson which
has added Valkey compatibility 118 119 . Redisson is a high-level client that offers distributed
objects, locks, etc., and as of v3.48.0 it supports Valkey as well 120, To use Valkey in Spring or
other frameworks, you can typically just change the host/port and it should work, since from the
application’ s perspectiveit’ s still Redis protocol.

+ Node.js: The Node Redis client (redis npm package) works with Valkey. There is also an official
multi-language client Valkey GLIDE, which in Node is available as | @valkey/valkey-glide 121.
Additionally, a client named iovalkey is a Node client optimized for Valkey/Redis (v0.3.1 as of
2025) 122, I’ s MIT-licensed and focused on performance - likely analogous to ioredis but for
Valkey.

+ Go: The Go ecosystem has many Redis clients (redigo, go-redis, etc.). Valkey provides valkey-go (a
Go client that supports auto-pipelining and client-side caching) 123 124, You can |go get
github.com/valkey-io/valkey-go to use it. Of course, go-redis (redis/go-redis) should also work as
it supports Redis 7.2 features.

+ Other Languages: PHP has phpredis extension which will work; Valkey also listed a PHP client in
their docs. C/C++ can use hiredis (works fine with Valkey). For C#/.NET, StackExchange.Redis (the
de-facto Redis client) is compatible with Valkey out of the box. In fact, cloud providers like AWS
and Azure have started supporting Valkey endpoints and the same clients are used. There’ s also
a Swift client introduced by Valkey (“valkey-swift”) for i0OS/macOS developers 125 , showing the
breadth of client support.

The Valkey GLIDE deserves a mention: it’ s a Rust-based client core that provides bindings in multiple
languages (Python, Java, Node, Go) 126 127, GLIDE is designed for high performance and advanced
features like server-assisted client-side caching. For example, GLIDE automatically pipelines commands
to reduce latency, and it supports tracking keys to get invalidation messages (the “client side caching”
feature using Redis/Valkey’ s tracking). If you need bleeding-edge performance from your client and are
okay with using a newer library, GLIDE is a great option (it' s maintained by the Valkey team and
Apache-2.0 licensed). But mainstream clients work perfectly well too - so you don’ t have to change all
your app code to adopt Valkey.

Utilities: Apart from client libraries, remember tools like valkey-benchmark (to load test) 93 , valkey-
check-rdb and valkey-check-aof (to verify and repair persistence files). If you have a corrupted AOF, you
can run |valkey-check-aof --fix on it 128, For RDB, corruption is rare, but valkey-check-rdb | can
analyze an RDB dump for errors.

Also, Valkey Sentinel is effectively a utility when run (valkey-server --sentinel <conf> startsit). There
aren’ tseparate binaries named differently, except the symlink valkey-sentinel which is just the server
in sentinel mode 129 . Manage sentinel via its config and the SENTINEL commands (like | SENTINEL
FAILOVER <master-name> to force a failover, etc.).

Finally, Valkey has a strong community - if you run into issues or need help, you can find the team on
their Slack/Discord (community links on valkey.io) or ask on Stack Overflow with the tag [valkey] 130 .

16

https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=,License%3A%20MIT
https://valkey.io/clients/#:~:text=redisson
https://valkey.io/clients/#:~:text=,MyBatis%2C%20JCache%2C%20Quarkus%2C%20Micronaut%2C%20Helidon
https://valkey.io/clients/#:~:text=,2.0
https://valkey.io/clients/#:~:text=valkey%20GLIDE
https://valkey.io/clients/#:~:text=iovalkey
https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=%2A%20Repo%3A%20valkey,side%20caching
https://valkey.io/blog/#:~:text=%2A%20%23%23%20Introducing%20valkey,Swift%20client%20for%20Valkey
https://valkey.io/clients/#:~:text=,js%20and%20Python
https://valkey.io/clients/#:~:text=,js%20and%20Python
https://valkey.io/topics/#:~:text=,to%20debug%20Valkey%20server%20processes
https://valkey.io/topics/persistence/#:~:text=,tool%20that%20ships%20with%20Valkey
https://valkey.io/topics/sentinel/#:~:text=If%20you%20are%20using%20the,with%20the%20following%20command%20line
https://github.com/valkey-io#:~:text=,valkey

The project being open source means you can also inspect the source code or even contribute. Tools like
valgrind | or perf| can be used if you’ re debugging low-level performance, and Valkey’ s source
comes with a test suite (make test |, etc.) which is useful if you suspect a bug and want to reproduce it.

With these references and tools at your disposal, you should be well-equipped to install, manage, and
develop with Valkey effectively. It is a powerful evolution of Redis with the freedom of open source -
combining familiarity with new improvements. Enjoy exploring Valkey’ s features and building upon this
high-performance key-value store!

Sources:

1. AWS ElastiCache - What is Valkey? (History and features of Valkey) 2 11
2. Valkey Documentation - Valkey Introduction and Features (Open source status, supported data
types) 1 3
3. Valkey Blog - Valkey 8.1 Performance Improvements (New hashtable, threading, optimizations)
14 12

4. Valkey Blog - Introducing Hash Field Expirations (Valkey 9.0 feature for per-field TTL) 18

5. Valkey Blog - Valkey 8.1 Release Highlights (Conditional SET IFEQ, observability improvements)
66 19

6. Valkey Blog - Numbered Databases in Valkey 9.0 (Cluster mode multi-DB support) 7 21
7. Valkey Documentation - Installation (CentOS & Docker) 131 39
8. Valkey Documentation - Replication and Sentinel (Sentinel capabilities and usage) 4 50

9. Community Guide - Keepalived VRRP for Valkey HA (Keepalived failover concept and caveats) 46
44

10. Valkey Documentation - Cluster Tutorial (Cluster ports, hash slots, creation with CLI) 5 57

11. Valkey Documentation - Administration and Upgrade (Linux tuning, no-downtime upgrade via
replica) 86 107

12. Valkey Documentation - Persistence (RDB vs AOF, backups) 71 73

13. Valkey Documentation - Migration from Redis to Valkey (Compatibility and migration steps) 83
80

14, Valkey Documentation - Clients (Supported client libraries in Python, Java, Node, Go, etc.) 9
114

1 2 3 10 11 WhatisValkey? - Valkey Explained - AWS

https://aws.amazon.com/elasticache/what-is-valkey/

4 48 49 50 51 52 53 129 Valkey Documentation + High availability with Valkey Sentinel
https://valkey.io/topics/sentinel/

5 6 42 43 54 55 56 57 58 59 60 61 62 63 \alkey Documentation - Cluster tutorial
https://valkey.io/topics/cluster-tutorial/

7 20 21 22 Valkey + Numbered Databases in Valkey 9.0
https://valkey.io/blog/numbered-databases/

8 91 93 113 Valkey -« Topics
https://valkey.io/topics/

9 114 115 116 117 118 119 120 121 122 123 124 126 127 Valkey « Client Libraries

https://valkey.io/clients/

17

https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=In%20March%202024%2C%20after%20Redis,by%20multiple%20Linux%20distributions%2C%20software
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20an%20open%20source%2C,for%20replication%20and%20high%20availability
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20has%20a%20vast%20variety,Valkey%20data%20types%20include
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=number%20of%20allocations%20to%20store,accesses%20while%20also%20saving%20memory
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=In%20the%20new%20release%2C%20TLS,new%20connections%20by%20around%20300
https://valkey.io/blog/#:~:text=One%20of%20Valkey%E2%80%99s%20greatest%20strengths,start%20using%20this%20feature%20today
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Improved%20Latency%20Insights
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Conditional%20Updates
https://valkey.io/blog/numbered-databases/#:~:text=Historically%2C%20before%20Valkey%E2%80%99s%20preceding%20project,changing%20everything%20about%20that%20advice
https://valkey.io/blog/numbered-databases/#:~:text=,SELECT%205%20OK
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/#:~:text=%2A%20%60valkey%2Fvalkey%3A8.1.4%60%20%2A%20%60valkey%2Fvalkey%3A8.1.4,alpine3.22
https://valkey.io/topics/sentinel/#:~:text=,the%20new%20address%20to%20use
https://valkey.io/topics/sentinel/#:~:text=The%20meaning%20of%20the%20arguments,statements%20is%20the%20following
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=between%20two%20instances%20of%20an,nginx%29%20that%20uses%20Redis%2FValkey
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=is_master%28%29%20%7B%20%5B%20,
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20does%20not%20use,we%20call%20a%20hash%20slot
https://valkey.io/topics/cluster-tutorial/#:~:text=valkey,replicas%201
https://valkey.io/topics/admin/#:~:text=,error%20on%20Linux%3F%20for%20details
https://valkey.io/topics/admin/#:~:text=Follow%20these%20steps%20to%20avoid,downtime
https://valkey.io/topics/persistence/#:~:text=,that%20will%20do%20all%20the
https://valkey.io/topics/persistence/#:~:text=AOF%20advantages
https://valkey.io/topics/migration/#:~:text=You%20can%20migrate%20a%20Redis,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=This%20is%20the%20easiest%20and,tradeoffs%20for%20this%20method%20are
https://valkey.io/clients/#:~:text=This%20page%20includes%20only%20clients,please%20refer%20to%20this%20link
https://valkey.io/clients/#:~:text=valkey
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20an%20open%20source%2C,for%20replication%20and%20high%20availability
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=In%20March%202024%2C%20after%20Redis,by%20multiple%20Linux%20distributions%2C%20software
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20has%20a%20vast%20variety,Valkey%20data%20types%20include
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Open%20source
https://aws.amazon.com/elasticache/what-is-valkey/#:~:text=Valkey%20is%20the%20most%20permissive,of%20memory%20as%20earlier%20versions
https://aws.amazon.com/elasticache/what-is-valkey/
https://valkey.io/topics/sentinel/#:~:text=,the%20new%20address%20to%20use
https://valkey.io/topics/sentinel/#:~:text=monitored%20Valkey%20instances.%20,If%20a%20failover
https://valkey.io/topics/sentinel/#:~:text=The%20Valkey%20source%20distribution%20contains,file%20looks%20like%20the%20following
https://valkey.io/topics/sentinel/#:~:text=The%20meaning%20of%20the%20arguments,statements%20is%20the%20following
https://valkey.io/topics/sentinel/#:~:text=Valkey%20Sentinel%20is%20a%20distributed,system
https://valkey.io/topics/sentinel/#:~:text=Sentinel%20itself%20is%20designed%20to,processes%20cooperating%20are%20the%20following
https://valkey.io/topics/sentinel/#:~:text=1,secure%20ways%20to%20deploy%20it
https://valkey.io/topics/sentinel/#:~:text=If%20you%20are%20using%20the,with%20the%20following%20command%20line
https://valkey.io/topics/sentinel/
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20does%20not%20use,we%20call%20a%20hash%20slot
https://valkey.io/topics/cluster-tutorial/#:~:text=There%20are%2016384%20hash%20slots,of%20the%20key%20modulo%2016384
https://valkey.io/topics/cluster-tutorial/#:~:text=Every%20Valkey%20Cluster%20node%20requires,port%60%20configuration
https://valkey.io/topics/cluster-tutorial/#:~:text=command%20port,won%27t%20be%20able%20to%20communicate
https://valkey.io/topics/cluster-tutorial/#:~:text=given%20key%2C%20we%20simply%20take,of%20the%20key%20modulo%2016384
https://valkey.io/topics/cluster-tutorial/#:~:text=To%20remain%20available%20when%20a,1%20additional%20replica%20nodes
https://valkey.io/topics/cluster-tutorial/#:~:text=However%2C%20when%20the%20cluster%20is,continue%20if%20node%20B%20fails
https://valkey.io/topics/cluster-tutorial/#:~:text=valkey,replicas%201
https://valkey.io/topics/cluster-tutorial/#:~:text=%60valkey,see%20a%20message%20like%20this
https://valkey.io/topics/cluster-tutorial/#:~:text=instances%20will%20be%20bootstrapped%20into,see%20a%20message%20like%20this
https://valkey.io/topics/cluster-tutorial/#:~:text=Every%20Valkey%20Cluster%20node%20requires,port%60%20configuration
https://valkey.io/topics/cluster-tutorial/#:~:text=
https://valkey.io/topics/cluster-tutorial/#:~:text=,127.0.0.1%3A7002%3E%20get%20hello
https://valkey.io/topics/cluster-tutorial/#:~:text=Valkey%20Cluster%20supports%20multiple%20key,a%20feature%20called%20hash%20tags
https://valkey.io/topics/cluster-tutorial/
https://valkey.io/blog/numbered-databases/#:~:text=Historically%2C%20before%20Valkey%E2%80%99s%20preceding%20project,changing%20everything%20about%20that%20advice
https://valkey.io/blog/numbered-databases/#:~:text=then%20does%20a%20modulo%20of,determinate%20factor%20in%20calculating%20slots
https://valkey.io/blog/numbered-databases/#:~:text=,SELECT%205%20OK
https://valkey.io/blog/numbered-databases/#:~:text=Additionally%2C%20numbered%20databases%20do%20not,application%20instead%20of%20numbered%20databases
https://valkey.io/blog/numbered-databases/
https://valkey.io/topics/#:~:text=,clone%20with%20PHP%20and%20Valkey
https://valkey.io/topics/#:~:text=,notifications%20of%20keyspace%20events%20via
https://valkey.io/topics/#:~:text=,to%20debug%20Valkey%20server%20processes
https://valkey.io/topics/#:~:text=Core%20Concepts
https://valkey.io/topics/
https://valkey.io/clients/#:~:text=This%20page%20includes%20only%20clients,please%20refer%20to%20this%20link
https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=valkey%20GLIDE
https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=,License%3A%20MIT
https://valkey.io/clients/#:~:text=redisson
https://valkey.io/clients/#:~:text=,MyBatis%2C%20JCache%2C%20Quarkus%2C%20Micronaut%2C%20Helidon
https://valkey.io/clients/#:~:text=,2.0
https://valkey.io/clients/#:~:text=valkey%20GLIDE
https://valkey.io/clients/#:~:text=iovalkey
https://valkey.io/clients/#:~:text=valkey
https://valkey.io/clients/#:~:text=%2A%20Repo%3A%20valkey,side%20caching
https://valkey.io/clients/#:~:text=,js%20and%20Python
https://valkey.io/clients/#:~:text=,js%20and%20Python
https://valkey.io/clients/

12 13 14 15 16 17 19 23 24 25 26 64 66 67 92 111 Va[key . Valkeys.l:COntinuingto Deliver
Enhanced Performance and Reliability
https://valkey.io/blog/valkey-8-1-0-ga/

18 27 28 29 94 112 125 Valkey - Blog
https://valkey.io/blog/

30 31 32 33 34 35 37 38 131 Valkey Documentation -« Installation
https://valkey.io/topics/installation/

36 GitHub - valkey-io/valkey: A flexible distributed key-value database that is optimized for caching and
other realtime workloads.
https://github.com/valkey-io/valkey

39 40 41 Valkey
https://valkey.io/

44 45 46 47 Simple Keepalived notify script for Valkey/Redis master-replica failover « GitHub
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5

65 85 8 87 88 89 90 107 108 109 Valkey Documentation « Administration

https://valkey.io/topics/admin/

68 69 70 71 72 73 74 75 76 77 78 79 128 \Valkey Documentation * Persistence

https://valkey.io/topics/persistence/

80 81 82 8 8 95 9 97 98 99 100 101 102 103 104 105 Va[key Documentation - Migrationfrom Redis
to Valkey
https://valkey.io/topics/migration/

106 Supported versions | Memorystore for Valkey - Google Cloud

https://cloud.google.com/memorystore/docs/valkey/supported-versions

110 Releases - valkey-io/valkey - GitHub
https://github.com/valkey-io/valkey/releases

130 Valkey - GitHub
https://github.com/valkey-io

18

https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=In%20the%20new%20release%2C%20TLS,new%20connections%20by%20around%20300
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20New%20Hashtable
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=number%20of%20allocations%20to%20store,accesses%20while%20also%20saving%20memory
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20probabilistic%20hyperloglog%20is%20another,on%20hyperloglog%20data%20types
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=regardless%20of%20the%20amount%20of,on%20hyperloglog%20data%20types
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Sorted%20set%20and%20hyperloglog%20and,bitcount%20optimizations
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Conditional%20Updates
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Extending%20the%20Slowlog%20to%20Commandlog
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%20has%20a%20built,threshold%60%20latency%20monitor
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%208,files%20by%20log%20collecting%20systems
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=The%20formatting%20of%20the%20timestamp,default%20is%20the%20existing%20format
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Active%20Defrag%20has%20been%20improved,dramatic%20reduction%20in%20tail%20latencies
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Improved%20Latency%20Insights
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Extending%20the%20Slowlog%20to%20Commandlog
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Programmability
https://valkey.io/blog/valkey-8-1-0-ga/#:~:text=Valkey%208,1%20GA%20release
https://valkey.io/blog/valkey-8-1-0-ga/
https://valkey.io/blog/#:~:text=One%20of%20Valkey%E2%80%99s%20greatest%20strengths,start%20using%20this%20feature%20today
https://valkey.io/blog/#:~:text=%2A%20,Capabilities%20in%20Valkey
https://valkey.io/blog/#:~:text=%2A%20,To%20Valkey
https://valkey.io/blog/#:~:text=%2A%20%23%23%20valkey,time%20applications
https://valkey.io/blog/#:~:text=%2A%20,Part%201
https://valkey.io/blog/#:~:text=%2A%20,the%20Community%2C%20Volume%201
https://valkey.io/blog/#:~:text=%2A%20%23%23%20Introducing%20valkey,Swift%20client%20for%20Valkey
https://valkey.io/blog/
https://valkey.io/topics/installation/#:~:text=sudo%20yum%20install%20valkey
https://valkey.io/topics/installation/#:~:text=sudo%20yum%20install%20valkey%20,doc
https://valkey.io/topics/installation/#:~:text=,doc
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/topics/installation/#:~:text=From%20source
https://valkey.io/topics/installation/#:~:text=The%20first%20thing%20to%20do,cli
https://valkey.io/topics/installation/#:~:text=Another%20interesting%20way%20to%20run,commands%20and%20see%20their%20replies
https://valkey.io/topics/installation/#:~:text=
https://valkey.io/topics/installation/
https://github.com/valkey-io/valkey#:~:text=It%20is%20as%20simple%20as%3A
https://github.com/valkey-io/valkey
https://valkey.io/#:~:text=%2A%20%60valkey%2Fvalkey%3A8.1.4%60%20%2A%20%60valkey%2Fvalkey%3A8.1.4,alpine3.22
https://valkey.io/#:~:text=Tags%3A
https://valkey.io/#:~:text=
https://valkey.io/
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=is_master%28%29%20%7B%20%5B%20,
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=log%20warn%20%27Failover%20failed%2C%20executing,REPLICAOF%20NO%20ONE%20fi
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=between%20two%20instances%20of%20an,nginx%29%20that%20uses%20Redis%2FValkey
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5#:~:text=It%20doesn%E2%80%99t%20provide%20a%20high,caches%2C%20user%20sessions%20and%20similar
https://gist.github.com/jirutka/20fbe0531099b09c0627bb52f2959aa5
https://valkey.io/topics/admin/#:~:text=,commands%20to%20assist%20in%20troubleshooting
https://valkey.io/topics/admin/#:~:text=stress%20testing%20is%20performed%2C%20and,most%20production%20deployments%20are%20run
https://valkey.io/topics/admin/#:~:text=,error%20on%20Linux%3F%20for%20details
https://valkey.io/topics/admin/#:~:text=,huge%20pages%20for%20additional%20context
https://valkey.io/topics/admin/#:~:text=Memory
https://valkey.io/topics/admin/#:~:text=swapping%20is%20enabled%2C%20you%20can,spikes%20and%20act%20on%20them
https://valkey.io/topics/admin/#:~:text=,it%20to%208%20or%209
https://valkey.io/topics/admin/#:~:text=Follow%20these%20steps%20to%20avoid,downtime
https://valkey.io/topics/admin/#:~:text=,is%20replying%20to%20your%20commands
https://valkey.io/topics/admin/#:~:text=If%20you%20are%20using%20Valkey,finally%20promote%20the%20last%20replica
https://valkey.io/topics/admin/
https://valkey.io/topics/persistence/#:~:text=,RDB%20in%20the%20same%20instance
https://valkey.io/topics/persistence/#:~:text=By%20default%20Valkey%20saves%20snapshots,commands
https://valkey.io/topics/persistence/#:~:text=RDB%20advantages
https://valkey.io/topics/persistence/#:~:text=,that%20will%20do%20all%20the
https://valkey.io/topics/persistence/#:~:text=,and%20may%20result%20in%20Valkey
https://valkey.io/topics/persistence/#:~:text=AOF%20advantages
https://valkey.io/topics/persistence/#:~:text=,the%20server%2C%20removing%20the%20latest
https://valkey.io/topics/persistence/#:~:text=,tool%20that%20ships%20with%20Valkey
https://valkey.io/topics/persistence/#:~:text=,the%20server%2C%20removing%20the%20latest
https://valkey.io/topics/persistence/#:~:text=,RDB%20in%20the%20same%20instance
https://valkey.io/topics/persistence/#:~:text=be%20transferred%20to%20far%20data,resynchronizations%20after%20restarts%20and%20failovers
https://valkey.io/topics/persistence/#:~:text=process%20needs%20to%20do%20in,resynchronizations%20after%20restarts%20and%20failovers
https://valkey.io/topics/persistence/#:~:text=,tool%20that%20ships%20with%20Valkey
https://valkey.io/topics/persistence/
https://valkey.io/topics/migration/#:~:text=This%20is%20the%20easiest%20and,tradeoffs%20for%20this%20method%20are
https://valkey.io/topics/migration/#:~:text=8
https://valkey.io/topics/migration/#:~:text=7,using%20one%20of%20the%20following
https://valkey.io/topics/migration/#:~:text=You%20can%20migrate%20a%20Redis,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=Redis%20Community%20Edition%20,not%20covered%20by%20this%20document
https://valkey.io/topics/migration/#:~:text=7,Valkey%20is%20effectively%20an%20upgrade
https://valkey.io/topics/migration/#:~:text=documentation
https://valkey.io/topics/migration/#:~:text=,written%20to%20that%20host%20directory
https://valkey.io/topics/migration/#:~:text=4,to%20create%20the%20backup%20file
https://valkey.io/topics/migration/#:~:text=,connections%20before%20starting%20the%20migration
https://valkey.io/topics/migration/#:~:text=2,6%2C286%20keys%20in%20the%20database
https://valkey.io/topics/migration/#:~:text=10,you%20obtained%20in%20step%202
https://valkey.io/topics/migration/#:~:text=To%20migrate%20a%20standalone%20Redis,you%20have%20the%20following%20options
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/#:~:text=,Migrating%20specific%20keys
https://valkey.io/topics/migration/
https://cloud.google.com/memorystore/docs/valkey/supported-versions#:~:text=Supported%20versions%20,instance%20to%20any%20newer%20version
https://cloud.google.com/memorystore/docs/valkey/supported-versions
https://github.com/valkey-io/valkey/releases#:~:text=Valkey%209.0.0,0%2C%20with%20performance%20improvements
https://github.com/valkey-io/valkey/releases
https://github.com/valkey-io#:~:text=,valkey
https://github.com/valkey-io

	Valkey Beginner’s Guide
	Concepts and Terminology
	New Features in Valkey (Compared to Redis 7.2)
	Installation Guide
	Installing Valkey on CentOS (and Linux)
	Running Valkey via Docker
	High-Availability Deployment Architectures
	Primary-Replica Mode (with Keepalived or Sentinel)
	Cluster (Sharded Mode with Valkey Cluster)

	Administration and Monitoring Guide
	Important Metrics to Monitor
	Ensuring Healthy Operation

	Backup and Recovery
	Performance Tuning
	Migration and Upgrade
	Migrating from Redis to Valkey
	Upgrading Valkey Versions

	Reference and Utility Commands; Client Tools
	Common Administration Commands (valkey-cli)
	Client Libraries and Integration

